
Package: debkeepr (via r-universe)
September 17, 2024

Type Package

Title Analysis of Non-Decimal Currencies and Double-Entry Bookkeeping

Version 0.1.1.9000

Description Analysis of historical non-decimal currencies and value
systems that use tripartite or tetrapartite systems such as
pounds, shillings, and pence. It introduces new vector classes
to represent non-decimal currencies, making them compatible
with numeric classes, and provides functions to work with these
classes in data frames in the context of double-entry
bookkeeping.

License MIT + file LICENSE

URL https://github.com/jessesadler/debkeepr,

https://jessesadler.github.io/debkeepr/

BugReports https://github.com/jessesadler/debkeepr/issues

Depends R (>= 3.5)

Imports cli (>= 3.4.0), dplyr (>= 1.0.0), magrittr, methods, rlang (>=
1.1.0), tibble (>= 3.0.0), vctrs (>= 0.6.1), zeallot

Suggests covr, ggplot2, ggraph, igraph, knitr, rmarkdown, roxygen2,
scales (>= 1.1.0), testthat (>= 3.1.3)

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Repository https://jessesadler.r-universe.dev

RemoteUrl https://github.com/jessesadler/debkeepr

RemoteRef HEAD

RemoteSha 64688727177298f80bb7ab3824ac01e1e74635db

1

https://github.com/jessesadler/debkeepr
https://jessesadler.github.io/debkeepr/
https://github.com/jessesadler/debkeepr/issues

2 arithmetic

Contents
arithmetic . 2
cast-decimal . 4
cast-lsd . 6
cast-tetra . 8
comparison . 10
convert-bases . 11
dafforne_accounts . 12
dafforne_transactions . 13
deb_convert_unit . 14
deb_decimal . 15
deb_is_decimal . 16
deb_is_lsd . 17
deb_is_tetra . 17
deb_lsd . 18
deb_tetra . 19
list-lsd . 21
lsd-column . 22
mathematics . 25
normalization . 26
tetra-column . 28
text . 30
transactions . 33
vec_math.deb_lsd . 36
vec_math.deb_tetra . 36

Index 37

arithmetic Arithmetic operations for debkeepr

Description

Arithmetic operations for debkeepr

Usage

S3 method for class 'deb_lsd'
vec_arith(op, x, y, ...)

Default S3 method:
vec_arith.deb_lsd(op, x, y, ...)

S3 method for class 'deb_lsd'
vec_arith.deb_lsd(op, x, y, ...)

S3 method for class 'numeric'

arithmetic 3

vec_arith.deb_lsd(op, x, y, ...)

S3 method for class 'deb_lsd'
vec_arith.numeric(op, x, y, ...)

S3 method for class 'MISSING'
vec_arith.deb_lsd(op, x, y, ...)

S3 method for class 'deb_decimal'
vec_arith(op, x, y, ...)

Default S3 method:
vec_arith.deb_decimal(op, x, y, ...)

S3 method for class 'deb_decimal'
vec_arith.deb_decimal(op, x, y, ...)

S3 method for class 'numeric'
vec_arith.deb_decimal(op, x, y, ...)

S3 method for class 'deb_decimal'
vec_arith.numeric(op, x, y, ...)

S3 method for class 'MISSING'
vec_arith.deb_decimal(op, x, y, ...)

S3 method for class 'deb_tetra'
vec_arith(op, x, y, ...)

Default S3 method:
vec_arith.deb_tetra(op, x, y, ...)

S3 method for class 'deb_tetra'
vec_arith.deb_tetra(op, x, y, ...)

S3 method for class 'numeric'
vec_arith.deb_tetra(op, x, y, ...)

S3 method for class 'deb_tetra'
vec_arith.numeric(op, x, y, ...)

S3 method for class 'MISSING'
vec_arith.deb_tetra(op, x, y, ...)

S3 method for class 'deb_decimal'
vec_arith.deb_lsd(op, x, y, ...)

S3 method for class 'deb_lsd'

4 cast-decimal

vec_arith.deb_decimal(op, x, y, ...)

S3 method for class 'deb_tetra'
vec_arith.deb_lsd(op, x, y, ...)

S3 method for class 'deb_lsd'
vec_arith.deb_tetra(op, x, y, ...)

S3 method for class 'deb_decimal'
vec_arith.deb_tetra(op, x, y, ...)

S3 method for class 'deb_tetra'
vec_arith.deb_decimal(op, x, y, ...)

Arguments

op Arithmetic operation.

x, y Vectors.

... For future expansion

Value

A deb_lsd, deb_tetra, deb_decimal or numeric vector depending on the inputs and arithmetic
operator.

cast-decimal Cast to deb_decimal

Description

Cast x to a deb_decimal vector.

Usage

deb_as_decimal(x, ...)

Default S3 method:
deb_as_decimal(x, ...)

S3 method for class 'deb_decimal'
deb_as_decimal(x, ...)

S3 method for class 'deb_lsd'
deb_as_decimal(x, unit = c("l", "s", "d"), ...)

S3 method for class 'deb_tetra'
deb_as_decimal(x, unit = c("l", "s", "d", "f"), ...)

cast-decimal 5

S3 method for class 'numeric'
deb_as_decimal(x, unit = c("l", "s", "d", "f"), bases = c(20, 12), ...)

S3 method for class 'logical'
deb_as_decimal(x, unit = c("l", "s", "d", "f"), bases = c(20, 12), ...)

S3 method for class 'list'
deb_as_decimal(x, unit = c("l", "s", "d", "f"), bases = c(20, 12), ...)

Arguments

x An object to coerce to deb_decimal.

... Arguments passed on to further methods.

unit A character vector of length one indicating the unit for the decimalized values,
either "l" (libra, the default), "s" (solidus), or "d" (denarius).

bases Numeric vector of length 2 used to specify the bases for the solidus or s and
denarius or d units. Default is c(20, 12), which conforms to the most widely
used system of 1 pound = 20 shillings and 1 shilling = 12 pence.

Details

Like deb_as_lsd(), deb_as_decimal() provides a method to cast a list of numeric vectors of
length 3 to deb_decimal. This may be helpful because the data is input by the value instead of by
the unit.

Value

A deb_decimal vector.

See Also

deb_as_lsd() and deb_as_tetra()

Examples

Cast a deb_lsd vector to deb_decimal
x <- deb_lsd(l = c(5, 3, 7),

s = c(16, 5, 6),
d = c(6, 0, 8))

deb_as_decimal(x)

Bases are automatically applied when
casting from deb_lsd to deb_decimal
x2 <- deb_lsd(l = c(5, 3, 7),

s = c(16, 5, 6),
d = c(6, 0, 8),
bases = c(60, 16))

deb_as_decimal(x2)

6 cast-lsd

Cast a deb_tetra vector to deb_decimal
Bases are automatically applied, creating
a deb_decimal vector with three bases units.
y <- deb_tetra(l = c(5, 13, 7),

s = c(12, 8, 16),
d = c(3, 11, 0),
f = c(1, 3, 2))

deb_as_decimal(y)

Cast a numeric vector to deb_decimal
z <- c(5.825, 3.25, 22/3)
deb_as_decimal(z)

Use the unit and bases arguments to specify
the unit and apply non-default bases
deb_as_decimal(z, unit = "s", bases = c(60, 16))

Casting a list to deb_decimal provides an
alternative to get lsd values to deb_decimal.
lsd_list <- list(c(5, 12, 3),

c(13, 8, 11),
c(7, 16, 0))

deb_as_decimal(lsd_list)

cast-lsd Cast to deb_lsd

Description

Cast x to a deb_lsd vector.

Usage

deb_as_lsd(x, ...)

Default S3 method:
deb_as_lsd(x, ...)

S3 method for class 'deb_lsd'
deb_as_lsd(x, ...)

S3 method for class 'deb_decimal'
deb_as_lsd(x, ...)

S3 method for class 'deb_tetra'
deb_as_lsd(x, ...)

S3 method for class 'numeric'

cast-lsd 7

deb_as_lsd(x, bases = c(20, 12), ...)

S3 method for class 'logical'
deb_as_lsd(x, bases = c(20, 12), ...)

S3 method for class 'list'
deb_as_lsd(x, bases = c(20, 12), ...)

Arguments

x An object to coerce to deb_lsd.

... Arguments passed on to further methods.

bases Numeric vector of length 2 used to specify the bases for the solidus or s and
denarius or d units. Default is c(20, 12), which conforms to the most widely
used system of 1 pound = 20 shillings and 1 shilling = 12 pence.

Details

Casting a list of numeric vectors of length 3 to deb_lsd provides an alternate way to create a
deb_lsd vector than deb_lsd(). This method may be helpful because the data is input by the value
instead of by the unit.

Value

A deb_lsd vector.

See Also

deb_as_decimal() and deb_as_tetra()

Examples

Cast a deb_decimal vector to deb_lsd
x <- c(5.825, 3.25, 22/3)
d1 <- deb_decimal(x)
deb_as_lsd(d1)

Bases are automatically applied when
casting from deb_decimal to deb_lsd
d2 <- deb_decimal(x, bases = c(60, 16))
deb_as_lsd(d2)

Cast a deb_tetra vector to deb_lsd
This removes the 'f' or farthings unit.
y <- deb_tetra(l = c(5, 13, 7),

s = c(12, 8, 16),
d = c(3, 11, 0),
f = c(1, 3, 2))

deb_as_lsd(y)

Cast a numeric vector to deb_lsd

8 cast-tetra

deb_as_lsd(x)

Use the bases argument to apply non-default bases
deb_as_lsd(x, bases = c(60, 16))

Casting a list to deb_lsd provides an alternate to deb_lsd()
This can be helpful for legibility. Compare:

deb_as_lsd(
list(c(5, 12, 3),

c(13, 8, 11),
c(7, 16, 0))

)

deb_lsd(l = c(5, 13, 7),
s = c(12, 8, 16),
d = c(3, 11, 0))

cast-tetra Cast to deb_tetra

Description

Cast x to a deb_tetra vector.

Usage

deb_as_tetra(x, ...)

Default S3 method:
deb_as_tetra(x, ...)

S3 method for class 'deb_tetra'
deb_as_tetra(x, ...)

S3 method for class 'deb_lsd'
deb_as_tetra(x, f, ...)

S3 method for class 'deb_decimal'
deb_as_tetra(x, f, ...)

S3 method for class 'numeric'
deb_as_tetra(x, bases = c(20, 12, 4), ...)

S3 method for class 'logical'
deb_as_tetra(x, bases = c(20, 12, 4), ...)

S3 method for class 'list'
deb_as_tetra(x, bases = c(20, 12, 4), ...)

cast-tetra 9

Arguments

x An object to coerce to deb_tetra.

... Arguments passed on to further methods.

f Integer of length 1 to represent the base of the farthing unit. Must be provided
to cast from deb_lsd or deb_decimal vectors with tripartite bases to deb_tetra.

bases Numeric vector of length 3 used to specify the bases for the solidus or s, denarius
or d, and farthing or f units. Default is c(20, 12, 4), which conforms to the
English system of 1 pound = 20 shillings, 1 shilling = 12 pence, and 1 pence =
4 farthing.

Details

Casting a list of numeric vectors of length 4 to deb_tetra provides an alternate way to create a
deb_tetra vector than deb_tetra(). This method may be helpful because the data is input by the
value instead of by the unit.

Value

A deb_tetra vector.

See Also

deb_as_lsd() and deb_as_decimal()

Examples

To cast from deb_lsd to deb_tetra an "f" unit must be supplied

Compare
lsd1 <- deb_lsd(8, 12, 4)
lsd2 <- deb_lsd(8, 12, 4, bases = c(60, 16))

deb_as_tetra(lsd1, f = 4)
deb_as_tetra(lsd2, f = 8)

Cast a deb_decimal vector with four units to deb_tetra.
Bases are automatically applied when casting from
tetrapartite deb_decimal to deb_tetra.
x <- c(5.11875, 3.76875, 25/3)
d1 <- deb_decimal(x, bases = c(20, 12, 4))
deb_as_tetra(d1)

Use "f" argument to cast from tripartite deb_decimal
to deb_tetra
d2 <- deb_decimal(x)
deb_as_tetra(d2, f = 4)

Cast a numeric vector to deb_tetra
deb_as_tetra(x)

10 comparison

Use the bases argument to apply non-default bases
deb_as_tetra(x, bases = c(60, 16, 8))

Casting a list to deb_tetra provides an alternate
to deb_tetra(). This can be helpful for legibility.
Compare:

deb_as_tetra(
list(c(5, 12, 3, 2),

c(13, 8, 11, 1),
c(7, 16, 0, 3))

)

deb_tetra(l = c(5, 13, 7),
s = c(12, 8, 16),
d = c(3, 11, 0),
f = c(2, 1, 3))

comparison Equality and comparison

Description

Equality and comparison

Usage

S3 method for class 'deb_lsd'
vec_proxy_equal(x, ...)

S3 method for class 'deb_lsd'
vec_proxy_compare(x, ...)

S3 method for class 'deb_tetra'
vec_proxy_equal(x, ...)

S3 method for class 'deb_tetra'
vec_proxy_compare(x, ...)

Arguments

x A deb_lsd vector.

... Arguments passed on to further methods.

Value

A data frame or numeric vector to be used for comparison.

convert-bases 11

convert-bases Convert bases of deb_lsd, deb_tetra, and deb_decimal vectors

Description

Convert bases of deb_lsd, deb_tetra, and deb_decimal vectors

Usage

deb_convert_bases(x, to)

Default S3 method:
deb_convert_bases(x, to)

S3 method for class 'deb_lsd'
deb_convert_bases(x, to)

S3 method for class 'deb_decimal'
deb_convert_bases(x, to)

S3 method for class 'deb_tetra'
deb_convert_bases(x, to)

Arguments

x A vector of class deb_lsd, deb_tetra, or deb_decimal.

to Numeric vector of length 2 or 3, representing the bases for the solidus, denarius,
and optionally farthing units to be converted to.

Details

deb_convert_bases() is the only way to change the bases of the solidus, denarius, and farthing
units associated with vectors of class deb_lsd, deb_tetra, and deb_decimal. It also provides a
means to convert between tripartite and tetrapartite bases with deb_decimal vectors.

If x is a deb_decimal vector with tetrapartite bases and unit "f" and to is a numeric vector of
length 2, the unit will be converted to "d".

Value

A vector of the same class as x with converted bases attribute.

Examples

lsd <- deb_lsd(5, 3, 8)
dec <- deb_decimal(8.825)
dec_tetra <- deb_decimal(1.840625, bases = c(20, 12, 4))
tetra <- deb_tetra(1, 16, 9, 3)

12 dafforne_accounts

deb_convert_bases(lsd, to = c(60, 16))
deb_convert_bases(dec, to = c(60, 16))
deb_convert_bases(dec_tetra, c(60, 16, 8))
deb_convert_bases(tetra, to = c(60, 16, 8))

Convert between tripartite and tetrapartite bases
deb_convert_bases(dec, to = c(60, 16, 8))
deb_convert_bases(dec_tetra, to = c(20, 12))

dafforne_accounts Accounts from the practice journal and ledger of Richard Dafforne

Description

A data set of the accounts from the first practice journal and ledger in Richard Dafforne’s account-
ing manual from 1660 called The Merchant’s Mirrour. By 1660 The Merchant’s Mirrour was in
its third edition, and its contents had been printed in the well-known merchant manual of Gerard
Malynes, Consuetudo Vel Lex Mercatoira since the 1636 edition, making it one of the most popular
bookkeeping manuals in 17th-century England. The data set is meant to be used in conjunction with
dafforne_transactions. It contains information on the accounts found in the practice journal and
ledger that Dafforne used to teach double-entry bookkeeping practices.

Usage

dafforne_accounts

Format

A data frame with 46 rows and 5 variables.

Details

The data set does not include the Balance account that Dafforne uses to close the books. The
transactions from this account can be recreated using the lsd account functions in debkeepr.

Variables

• id: Numeric id for each account. The ids correspond to the ids in the credit and debit
variables in dafforne_transactions.

• account: Name of the account.

• ledger: Page on which the account appears in the ledger.

• investor: The investor or the person’s whose capital is involved in the account. Accounts
that only deal with the bookkeeper’s capital are listed as "ego".

• description: Short description of each account.

dafforne_transactions 13

Source

Richard Dafforne, The Merchant’s Mirrour, Or Directions for the Perfect Ordering and Keeping of
His Accounts, Third Edition, (London, 1660)

dafforne_transactions Transactions from the practice journal and ledger of Richard Dafforne

Description

A data set of the transactions from the first practice journal and ledger in Richard Dafforne’s ac-
counting manual from 1660 called The Merchant’s Mirrour. By 1660 The Merchant’s Mirrour was
in its third edition, and its contents had been printed in the well-known merchant manual of Gerard
Malynes, Consuetudo Vel Lex Mercatoira since the 1636 edition, making it one of the most popular
bookkeeping manuals in 17th-century England. The data set is meant to be used in conjunction with
dafforne_accounts. It contains the transactions in the practice journal and ledger that Dafforne
used to teach double-entry bookkeeping practices.

Usage

dafforne_transactions

Format

A data frame with 177 rows and 8 variables.

Details

The data set does not include the last 16 transactions recorded in the journal, which deal with
the balancing of the book. These transactions can be recreated using the lsd account functions in
debkeepr.

Variables

• id: Numeric id for each transaction.

• credit: Account id for the credit account in the transactions. The accounts that discharges
the transactional value or from which the value derives. The account ids correspond to the id
variable in dafforne_accounts.

• debit: Account id for the debit account in the transactions. The accounts that receive the
transactional value. The account ids correspond to the id variable in dafforne_accounts.

• date: Date on which the transaction was entered into the journal. Date conforms to the
Anglican calendar that used the old Julian calendar with the new year on 25 March. Encoded
as a date vector.

• lsd: Column of class deb_lsd with pounds, shillings, and pence values. Bases for shillings
and pence are 20 and 12 respectively.

• journal: Page on which the transaction is recorded in the journal.

14 deb_convert_unit

• ledger: The pages on which the transaction is recorded in the ledger. The number before the
slash is the page on which the debit is recorded. The number after the slash is the page on
which the credit is recorded.

• description: Description of the transaction as recorded in the journal.

Source

Richard Dafforne, The Merchant’s Mirrour, Or Directions for the Perfect Ordering and Keeping of
His Accounts, Third Edition, (London, 1660)

deb_convert_unit Convert the unit of deb_decimal vectors

Description

Convert the unit attribute of deb_decimal vectors.

Usage

deb_convert_unit(x, to = c("l", "s", "d", "f"))

Arguments

x A vector of class deb_decimal.

to A character vector of length one indicating the unit to be converted to. Choice
of "l" (libra, the default), "s" (solidus), "d" (denarius), or "f" (farthing).

Details

deb_convert_unit() converts the unit of a deb_decimal vector to either "l", "s", "d", or op-
tionally "f" if the vector has tetrapartite bases. This changes the representation of the vector, but
the value remains equivalent.

Value

A deb_decimal vector with a converted unit attribute.

Examples

x <- deb_decimal(c(8.825, 15.125, 3.65))
y <- deb_decimal(c(56.45, 106.525, 200.4), unit = "s")
z <- deb_decimal(c(8472, 14520, 3504),

unit = "f",
bases = c(20, 12, 4))

deb_convert_unit(x, to = "s")
deb_convert_unit(x, to = "d")
deb_convert_unit(y, to = "l")

deb_decimal 15

deb_convert_unit(y, to = "d")
deb_convert_unit(z, to = "l")
deb_convert_unit(z, to = "s")

deb_decimal A decimalized class for tripartite and tetrapartite values

Description

Create a vector of class deb_decimal to integrate non-decimal currencies and other measurements
that use tripartite or tetrapartite units into standardized forms of analysis provided by R.

Usage

deb_decimal(x = double(), unit = c("l", "s", "d", "f"), bases = c(20, 12))

Arguments

x A numeric vector representing the decimalized values of either tripartite or tetra-
partite values.

unit A character vector of length one indicating the unit for the decimalized values,
either "l" (libra, the default), "s" (solidus), "d" (denarius), or "f" (farthing).
"f" is only valid if the bases argument is a numeric vector of length 3 (a tetra-
partite value).

bases Numeric vector of length 2 or 3 used to specify the bases for the solidus or s,
denarius or d, and optionally the farthing or f units. Default is c(20, 12), which
conforms to the most widely used tripartite system of 1 pound = 20 shillings and
1 shilling = 12 pence.

Details

The deb_decimal class and the debkeepr package use the nomenclature of l, s, and d to represent
the tripartite system of pounds, shillings, and pence units. The abbreviations derive from the Latin
terms libra, solidus, and denarius. In the 8th century a solidus came to represent 12 denarii coins,
and, for a time at least, 240 denarii were made from one libra or pound of silver. The custom of
counting coins in dozens (solidi) and scores of dozens (librae) spread throughout the Carolingian
Empire and became ingrained in much of Europe. However, a variety of accounting systems arose at
different times that used other bases for the solidus and denarius units and even additional units. The
deb_decimal class decimalizes either tripartite or tetrapartite values. The bases attribute makes
it possible to specify the bases for the solidus, denarius, and optionally farthing units. The unit
attribute identifies the decimalized unit: either libra, solidus, denarius, or farthing.

deb_decimal vectors can either be tripartite, like deb_lsd, or tetrapartite, like deb_tetra. These
two kinds of deb_decimal vectors are distinguished by the length of bases attribute (2 for tripartite
and 3 for tetrapartite) and the addition of the farthing unit for tetrapartite. If the solidus and denarius
bases are equal, tripartite and tetrapartite deb_decimal vectors can be combined. The result is a
deb_decimal vector with tripartite bases.

https://en.wikipedia.org/wiki/£sd
https://en.wikipedia.org/wiki/French_livre
https://en.wikipedia.org/wiki/Solidus_(coin)
https://en.wikipedia.org/wiki/Denarius
https://en.wikipedia.org/wiki/Non-decimal_currency

16 deb_is_decimal

Value

Returns a vector of class deb_decimal.

See Also

The deb_decimal class works in concert with the deb_lsd and deb_tetra classes. These classes
maintain the tripartite (deb_lsd) and tetrapartite (deb_tetra) unit structure of non-decimal curren-
cies and values. See deb_lsd() and deb_tetra().

Examples

deb_decimal with tripartite units
deb_decimal(c(5.25, 3.825, 8.5))

Set the unit of the deb_decimal vector
deb_decimal(c(105, 76.5, 170), unit = "s")
deb_decimal(c(1260, 918, 240), unit = "d")

Set the bases of the deb_decimal vector
deb_decimal(c(5.25, 3.825, 8.5), bases = c(60, 16))

Create a prototype or vector of length 0
deb_decimal()

To create a tetrapartite value, provide numeric vector
of length 3 to bases argument
deb_decimal(c(5.11875, 3.234375, 8.2875),

bases = c(20, 12, 4))
deb_decimal(c(4914, 3105, 7956),

unit = "f",
bases = c(20, 12, 4))

deb_is_decimal Test if an object is of class deb_decimal

Description

Test if an object is of class deb_decimal.

Usage

deb_is_decimal(x)

Arguments

x An object.

Value

TRUE if object is of class deb_decimal and FALSE if it is not.

deb_is_lsd 17

Examples

x <- deb_decimal(c(5.25, 3.825, 8.5))
y <- c(5.25, 3.825, 8.5)

deb_is_decimal(x)
deb_is_decimal(y)

deb_is_lsd Test if an object is of class deb_lsd

Description

Test if an object is of class deb_lsd.

Usage

deb_is_lsd(x)

Arguments

x An object.

Value

TRUE if object is of class deb_lsd and FALSE if it is not.

Examples

x <- deb_lsd(5, 3, 8)
y <- c(5, 3, 8)

deb_is_lsd(x)
deb_is_lsd(y)

deb_is_tetra Test if an object is of class deb_tetra

Description

Test if an object is of class deb_tetra.

Usage

deb_is_tetra(x)

18 deb_lsd

Arguments

x An object.

Value

TRUE if object is of class deb_tetra and FALSE if it is not.

Examples

x <- deb_tetra(5, 3, 8, 2)
y <- c(5, 3, 8, 2)

deb_is_tetra(x)
deb_is_tetra(y)

deb_lsd A class for pounds, shillings and pence values

Description

Create a vector of class deb_lsd to integrate non-decimal currencies into standardized forms of
analysis provided by R.

Usage

deb_lsd(l = double(), s = double(), d = double(), bases = c(20, 12))

Arguments

l Numeric vector representing the pounds unit.

s Numeric vector representing the shillings unit.

d Numeric vector representing the pence unit.

bases Numeric vector of length 2 used to specify the bases for the solidus or s and
denarius or d units. Default is c(20, 12), which conforms to the most widely
used system of 1 pound = 20 shillings and 1 shilling = 12 pence.

Details

The deb_decimal class and the debkeepr package use the nomenclature of l, s, and d to represent
the tripartite system of pounds, shillings, and pence units. The abbreviations derive from the Latin
terms libra, solidus, and denarius. In the 8th century a solidus came to represent 12 denarii coins,
and, for a time at least, 240 denarii were made from one libra or pound of silver. The custom of
counting coins in dozens (solidi) and scores of dozens (librae) spread throughout the Carolingian
Empire and became ingrained in much of Europe. However, a variety of accounting systems arose
at different times that used other bases for the solidus and denarius units. The bases attribute of
deb_decimal vectors makes it possible to specify alternative bases for the solidus and denarius
units.

https://en.wikipedia.org/wiki/£sd
https://en.wikipedia.org/wiki/French_livre
https://en.wikipedia.org/wiki/Solidus_(coin)
https://en.wikipedia.org/wiki/Denarius
https://en.wikipedia.org/wiki/Non-decimal_currency

deb_tetra 19

The length of l, s, and d must either be all equal, or a vector of length 1 can be recycled to the
length of the other argument(s). See the vctrs package for further details on recycling vectors. In
addition, l, s, and d must either all have no values, resulting in a vector of length 0, or all possess
numeric vectors.

Value

Returns a vector of class deb_lsd.

See Also

The deb_lsd class works in concert with the deb_decimal class, which represents non-decimal
currencies as decimalized values. See deb_decimal(). To represent values with tetrapartite units
see deb_tetra().

Examples

deb_lsd(5, 3, 8)
deb_lsd(l = c(10, 8, 5),

s = c(6, 13, 8),
d = c(8, 4, 10))

Recycle length 1 vector
deb_lsd(l = c(10, 8, 5),

s = c(6, 13, 8),
d = 0)

Set the bases of the deb_lsd vector
deb_lsd(5, 3, 8, bases = c(60, 16))
deb_lsd(l = c(10, 28, 5),

s = c(6, 33, 13),
d = c(8, 42, 10),
bases = c(60, 16))

Create a prototype or vector of length 0
deb_lsd()

deb_tetra A class for tetrapartite values

Description

Create a vector of class deb_tetra to integrate values with four units into standardized forms of
analysis provided by R.

https://vctrs.r-lib.org/articles/type-size.html

20 deb_tetra

Usage

deb_tetra(
l = double(),
s = double(),
d = double(),
f = double(),
bases = c(20, 12, 4)

)

Arguments

l Numeric vector representing the pounds unit.

s Numeric vector representing the shillings unit.

d Numeric vector representing the pence unit.

f Numeric vector representing the farthing or fourth unit.

bases Numeric vector of length 3 used to specify the bases for the solidus or s, denarius
or d, and farthing or f units. Default is c(20, 12, 4), which conforms to the
English system of 1 pound = 20 shillings, 1 shilling = 12 pence, and 1 pence =
4 farthing.

Details

The deb_tetra class extends the concept of the deb_lsd class to incorporate currencies and other
types of values that consist of four units. A variety of currencies and measurements of weights
expanded beyond the conventional tripartite system of pounds, shillings, and pence to include a
fourth unit. deb_tetra adds a fourth unit, named f for farthing, to the l, s, and d units used by
deb_lsd. The bases attribute of deb_tetra vectors makes it possible to specify alternative bases
for the solidus, denarius, and farthing units.

The length of l, s, d, and f must either be all equal, or a vector of length 1 can be recycled to the
length of the other argument(s). See the vctrs package for further details on recycling vectors. In
addition, l, s, d, and f must either all have no values, resulting in a vector of length 0, or all possess
numeric vectors.

Value

Returns a vector of class deb_tetra.

See Also

The deb_tetra class works in concert with the deb_decimal class, which can represent tetrapartite
values as decimalized values. See deb_decimal(). To represent values with tripartite units see
deb_lsd().

Examples

deb_tetra(5, 3, 8, 2)
deb_tetra(l = c(10, 8, 5),

s = c(6, 13, 8),

https://en.wikipedia.org/wiki/£sd
https://vctrs.r-lib.org/articles/type-size.html

list-lsd 21

d = c(8, 4, 10),
f = c(2, 3, 1))

Recycle length 1 vector
deb_tetra(l = c(10, 8, 5),

s = c(6, 13, 8),
d = c(8, 4, 10),
f = 2)

Set the bases of the deb_tetra vector
deb_tetra(5, 3, 8, 2, bases = c(60, 16, 8))
deb_tetra(l = c(10, 28, 5),

s = c(6, 33, 13),
d = c(8, 12, 10),
f = c(5, 3, 6),
bases = c(60, 16, 8))

Create a prototype or vector of length 0
deb_tetra()

list-lsd Cast deb_lsd or deb_tetra to a list of values

Description

Cast a deb_lsd or deb_tetra vector to a list of numeric vectors either three or four values per list
item corresponding to lsd or tetra values.

Usage

deb_as_list(x, ...)

Default S3 method:
deb_as_list(x, ...)

S3 method for class 'deb_lsd'
deb_as_list(x, ...)

S3 method for class 'deb_tetra'
deb_as_list(x, ...)

Arguments

x A deb_lsd or deb_tetra vector to cast to a list of values.

... Arguments passed on to further methods.

22 lsd-column

Details

deb_as_list() turns a deb_lsd or deb_tetra vector into a list of numeric vectors of length 3 or
4. It is the inverse of deb_as_lsd() and deb_as_tetra(). Compare to as.list(), which creates
a list of deb_lsd or deb_tetra vectors or unclass(), which creates a list of length 3 or 4 with
numeric vectors corresponding to the units.

Value

A list of numeric vectors of length 3 or 4, corresponding to lsd or tetra values.

See Also

deb_as_lsd() and deb_as_tetra() for the inverse of deb_as_list().

Examples

deb_lsd vector
x <- deb_lsd(l = 0:3, s = 4:7, d = 8:11)

deb_as_list(x)

deb_tetra vector

y <- deb_tetra(l = 0:3, s = 4:7, d = 8:11, f = 1:4)

deb_as_list(y)

This is the inverse of `deb_as_lsd()` of a list of lsd values
z <- deb_as_list(x)

identical(x, deb_as_lsd(z))

lsd-column Helpers to create and separate a deb_lsd column in a data frame

Description

• deb_gather_lsd() creates a deb_lsd column from separate variables representing pounds,
shillings, and pence values.

• deb_spread_lsd() creates separate variables for pounds, shillings, and pence from a deb_lsd
column.

lsd-column 23

Usage

deb_gather_lsd(
df,
l = l,
s = s,
d = d,
bases = c(20, 12),
lsd_col = lsd,
replace = FALSE

)

deb_spread_lsd(df, lsd = lsd, l_col = l, s_col = s, d_col = d, replace = FALSE)

Arguments

df A data frame.

l Pounds column: Unquoted name of a numeric variable corresponding to the
pounds or libra unit. Default is l.

s Shillings column: Unquoted name of a numeric variable corresponding to the
shillings or solidus unit. Default is s.

d Pence column: Unquoted name of a numeric variable corresponding to the pence
or denarius unit. Default is d.

bases Numeric vector of length 2 used to specify the bases for the solidus or s and
denarius or d units. Default is c(20, 12), which conforms to the most widely
used system of 1 pound = 20 shillings and 1 shilling = 12 pence.

lsd_col Unquoted name of the deb_lsd column created by the function. Default is lsd.

replace Logical (default FALSE). When TRUE, the newly created column(s) will replace
the one(s) used to create it/them.

lsd deb_lsd column: Unquoted name of a deb_lsd column. Default is lsd.

l_col Unquoted name for the pounds column created by the function. Default is l.

s_col Unquoted name for the shillings column created by the function. Default is s.

d_col Unquoted name for the pence column created by the function. Default is d.

Details

When transcribing historical accounting data by hand, entering the pounds, shillings, and pence
values (lsd) into separate columns is probably the easiest and least error prone method. The
deb_gather_() and deb_spread_() set of functions provide helpers to go back and forth between
this mode of data entry and the use of deb_lsd and deb_tetra vectors within data frames in R.
deb_gather_lsd() creates a deb_lsd column from l, s, and d columns representing the three units
of this type of value. deb_spread_lsd() does the opposite. It takes a deb_lsd column and spreads
it into three separate pounds, shillings, and pence columns.

Values for column names (lsd_col, l_col, s_col, and d_col) must be valid column names. They
can be quoted or unquoted, but they cannot be vectors or bare numbers. This follows the rules of
dplyr::rename().

24 lsd-column

Value

A data frame with a new deb_lsd column for deb_gather_lsd() or new pounds, shillings, and
pence columns for deb_spread_lsd().

See Also

deb_gather_tetra() and deb_spread_tetra() provide the same functionality for the less com-
mon tetrapartite values of pounds, shillings, pence, and farthings.

Examples

libra <- c(3, 5, 6, 2)
solidus <- c(10, 18, 11, 16)
denarius <- c(9, 11, 10, 5)

data frame with separate l, s, and d variables and default names
x <- data.frame(accounts = c(1, 2, 3, 4),

l = libra,
s = solidus,
d = denarius)

data frame with deb_lsd variable and default names
y <- data.frame(accounts = c(1, 2, 3, 4),

lsd = deb_lsd(l = libra,
s = solidus,
d = denarius))

Gather l, s, and d variables into deb_lsd column
deb_gather_lsd(x, l = l, s = s, d = d)

Spread deb_lsd column into separate l, s, and d columns
deb_spread_lsd(y, lsd = lsd)

Replace original columns with replace = TRUE
deb_gather_lsd(x, replace = TRUE)
deb_spread_lsd(y, replace = TRUE)

Choose non-default column names
deb_gather_lsd(x, lsd_col = data, replace = TRUE)
deb_spread_lsd(y,

l_col = libra,
s_col = solidus,
d_col = denarius,
replace = TRUE)

The two functions are opposites
z <- x %>%

deb_gather_lsd(replace = TRUE) %>%
deb_spread_lsd(replace = TRUE)

all.equal(x, z)

mathematics 25

mathematics Math group with deb_lsd and deb_tetra vectors

Description

Math and Summary group of functions with deb_lsd and deb_tetra vectors. Implemented func-
tions:

• Summary group: sum(), any(), and all().

• Math group: abs(), round(), signif(), ceiling(), floor(), trunc(), cummax(), cummin(),
and cumsum().

• Additional generics: mean(), is.nan(), is.finite(), and is.infinite().

All other functions from the groups not currently implemented, including median(), quantile(),
and summary().

Arguments

x An vector of class deb_lsd or deb_tetra.

... deb_lsd or deb_tetra vectors in sum() and arguments passed on to further
methods in mean().

na.rm Logical. Should missing values (including ‘NaN“) be removed?

digits Integer. Indicating the number of decimal places (round()) or significant digits
(signif()) to be used.

Details

sum() and cumsum() return a normalized deb_lsd or deb_tetra values.

Round family of functions only affect the denarius (d) unit of a deb_lsd value and the farthing (f)
unit of deb_tetra value. All values are normalized.

If you need a wider implementation of Math and Summary group functions, use a deb_decimal
vector. However, median(), quantile(), and summary() are also not currently implemented for
deb_decimal vectors. To use these functions cast deb_lsd, deb_tetra, and deb_decimal vectors
to numeric.

Value

A deb_lsd or deb_tetra vector with normalized values.

Examples

x <- deb_lsd(l = c(5, 8, 12),
s = c(16, 6, 13),
d = c(6, 11, 0))

y <- deb_tetra(l = c(5, 8, 12),
s = c(16, 6, 13),

26 normalization

d = c(6, 11, 0),
f = c(3, 2, 3))

All values are normalized with sum and cumsum
sum(x)
sum(y)
cumsum(x)
cumsum(y)
mean(x)
mean(y)

Round family on deb_lsd affects the denarius unit
x2 <- deb_lsd(5, 12, 5.8365)
y2 <- deb_tetra(5, 12, 8, 4.125)
round(x2)
round(y2)
round(x2, digits = 2)
signif(x2, digits = 2)
ceiling(x2)
ceiling(y2)
floor(x2)
floor(y2)
trunc(x2)
trunc(y2)

The returned values are normalized whether
they are positive or negative
x3 <- deb_lsd(9, 19, 11.825)
x4 <- deb_lsd(-9, -19, -11.825)
round(x3)
round(x3, digits = 1)

ceiling(x3)
floor(x4)

trunc(x3)
trunc(x4)

normalization Normalize tripartite and tetrapartite values

Description

Normalize tripartite and tetrapartite values values to given bases.

Usage

deb_normalize(x, ...)

normalization 27

Default S3 method:
deb_normalize(x, ...)

S3 method for class 'deb_lsd'
deb_normalize(x, ...)

S3 method for class 'numeric'
deb_normalize(x, bases = c(20, 12), ...)

S3 method for class 'deb_tetra'
deb_normalize(x, ...)

Arguments

x Either an vector of class deb_lsd, deb_tetra, or a numeric vector of length 3
or 4 representing the values to be normalized.

... Arguments passed on to further methods.

bases Used only if x is a numeric vector. A Numeric vector of length 2 or 3 used to
specify the bases for the solidus or s, denarius or d, and optionally the farthing or
f units. Default is c(20, 12), which conforms to the most widely used system
of 1 pound = 20 shillings and 1 shilling = 12 pence.

Value

Returns a vector of class deb_lsd with normalized solidus and denarius units or a vector of class
deb_tetra with normalized solidus, denarius, and farthing units.

Examples

Normalize a deb_lsd vector
x <- deb_lsd(12, 93, 78)
x_alt <- deb_lsd(12, 93, 78, bases = c(60, 16))
deb_normalize(x)
deb_normalize(x_alt)

Normalize a deb_tetra vector
t <- deb_tetra(12, 83, 78, 42)
t_alt <- deb_tetra(12, 83, 78, 42, bases = c(60, 16, 8))
deb_normalize(t)
deb_normalize(t_alt)

Normalize a numeric vector of length 3
deb_normalize(c(12, 93, 78))
deb_normalize(c(12, 93, 78), bases = c(60, 16))

Normalize a numeric vector of length 4
Must provide bases of length 3
deb_normalize(c(12, 93, 78, 42), bases = c(20, 12, 4))
deb_normalize(c(12, 93, 78, 42), bases = c(60, 16, 8))

28 tetra-column

tetra-column Helpers to create and separate a deb_tetra column in a data frame

Description

• deb_gather_tetra() creates a deb_tetra column from separate variables representing pounds,
shillings, pence, and farthing values.

• deb_spread_tetra() creates separate variables for pounds, shillings, pence, and farthings
from a deb_tetra column.

Usage

deb_gather_tetra(
df,
l = l,
s = s,
d = d,
f = f,
bases = c(20, 12, 4),
tetra_col = tetra,
replace = FALSE

)

deb_spread_tetra(
df,
tetra = tetra,
l_col = l,
s_col = s,
d_col = d,
f_col = f,
replace = FALSE

)

Arguments

df A data frame.

l Pounds column: Unquoted name of a numeric variable corresponding to the
pounds or libra unit. Default is l.

s Shillings column: Unquoted name of numeric variable corresponding to the
shillings or solidus unit. Default is s.

d Pence column: Unquoted name of numeric variable corresponding to the pence
or denarius unit. Default is d.

f Farthing column: Unquoted name of numeric variable corresponding to the far-
thing or f unit. Default is f.

tetra-column 29

bases Numeric vector of length 3 used to specify the bases for the solidus or s, denarius
or d, and farthing or f units. Default is c(20, 12, 4), which conforms to the
English system of 1 pound = 20 shillings, 1 shilling = 12 pence, and 1 pence =
4 farthing.

tetra_col Unquoted name of the deb_tetra column created by the function. Default is
tetra.

replace Logical (default FALSE). When TRUE, the newly created column(s) will replace
the one(s) used to create it/them.

tetra deb_tetra column: Unquoted name of a deb_tetra column. Default is tetra.

l_col An unquoted name for the pounds column created by the function. Default is l.

s_col An unquoted name for the shillings column created by the function. Default is
s.

d_col An unquoted name for the pence column created by the function. Default is d.

f_col An unquoted name for the farthings column created by the function. Default is
f.

Details

When transcribing historical accounting data by hand, entering the pounds, shillings, pence, and
optionally farthing values (lsd(f)) into separate columns is probably the easiest and least error prone
method. The deb_gather_() and deb_spread_() set of functions provide helpers to go back
and forth between this mode of data entry and the use of deb_lsd and deb_tetra vectors within
data frames in R. deb_gather_tetra() creates a deb_tetra column from four separate columns
representing the four units in this type of value. deb_spread_tetra() does the opposite. It takes a
deb_tetra column and spreads it into four separate columns representing the four units.

Values for column names (tetra_col, l_col, s_col, d_col, and f_col) must be valid column
names. They can be quoted or unquoted, but they cannot be vectors or bare numbers. This follows
the rules of dplyr::rename().

Value

A data frame with a new deb_tetra column for deb_gather_tetra() or new pounds, shillings,
pence, and farthing columns for deb_spread_tetra().

See Also

deb_gather_lsd() and deb_spread_lsd() provide the same functionality for the more common
tripartite values of pounds, shillings, and pence.

Examples

libra <- c(3, 5, 6, 2)
solidus <- c(10, 18, 11, 16)
denarius <- c(9, 11, 10, 5)
farthing <- c(2, 3, 1, 0)

data frame with separate l, s, and d variables and default names

30 text

x <- data.frame(accounts = c(1, 2, 3, 4),
l = libra,
s = solidus,
d = denarius,
f = farthing)

data frame with deb_tetra variable and default names
y <- data.frame(accounts = c(1, 2, 3, 4),

tetra = deb_tetra(l = libra,
s = solidus,
d = denarius,
f = farthing))

Gather l, s, d, and f variables into a deb_tetra column
deb_gather_tetra(x, l = l, s = s, d = d, f = f)

Spread deb_tetra column into separate l, s, d, and f columns
deb_spread_tetra(y, tetra = tetra)

Replace original columns with replace = TRUE
deb_gather_tetra(x, replace = TRUE)
deb_spread_tetra(y, replace = TRUE)

Choose non-default column names
deb_gather_tetra(x, tetra_col = data, replace = TRUE)
deb_spread_tetra(y,

l_col = libra,
s_col = solidus,
d_col = denarius,
f_col = farthing,
replace = TRUE)

The two functions are opposites
z <- x %>%

deb_gather_tetra(replace = TRUE) %>%
deb_spread_tetra(replace = TRUE)

all.equal(x, z)

text Format deb_lsd, deb_decimal, and deb_tetra vectors as text

Description

Flexible way to format deb_lsd, deb_decimal, and deb_tetra vectors for use as labels or text.

Usage

deb_text(x, ...)

text 31

Default S3 method:
deb_text(x, ...)

S3 method for class 'deb_lsd'
deb_text(
x,
digits = 0,
currency = "£",
l.mark = "",
s.mark = "s.",
d.mark = "d.",
sep = " ",
big.mark = ",",
decimal.mark = ".",
suffix = "",
...

)

S3 method for class 'deb_decimal'
deb_text(
x,
digits = 0,
currency = "£",
big.mark = ",",
decimal.mark = ".",
suffix = "",
...

)

S3 method for class 'deb_tetra'
deb_text(
x,
digits = 0,
currency = "£",
l.mark = "",
s.mark = "s.",
d.mark = "d.",
f.mark = "f.",
sep = " ",
big.mark = ",",
decimal.mark = ".",
suffix = "",
...

)

Arguments

x A vector of class deb_lsd, deb_decimal, or deb_tetra.

32 text

... Arguments passed on to further methods.

digits Desired number of digits after the decimal mark to which to round the numeric
values. Default is 0.

currency Character used for the currency mark. Default is pound sign.

l.mark Character used following the pounds (l) unit. Default is "".

s.mark Character used following the shillings (s) unit. Default is "s.".

d.mark Character used following the pence (d) unit. Default is "d.".

sep Character to separate pounds, shillings, pence, and optionally farthing units.
Default is " ".

big.mark Character used to mark intervals to the left of the decimal mark. Default is ","
with default big.interval of 3.

decimal.mark Character used for decimal mark. Default is ".".

suffix Character placed after the values. Default is "".

f.mark Character used following the farthing (f) unit with tetrapartite values. Default is
"f.".

Details

deb_text is similar to as.character() in that both return a character vector of the values of
deb_lsd, deb_decimal, and deb_tetra vectors. However, as.character() uses the normal print-
ing method for these vectors. deb_text() provides a convenient way to nicely format deb_lsd,
deb_decimal, and deb_tetra vectors for use as text or labels with options for customization.

deb_text() uses formatC() to format the numeric values of x. Numbers are printed in non-
scientific format and trailing zeros are dropped.

All character vector arguments should be length 1.

Value

A Character vector of formatted values.

See Also

formatC() for further options passed to

Examples

lsd <- deb_lsd(l = c(10000, 0, -10000),
s = c(8, 0, -8),
d = c(5.8252, 0, -5.8252))

dec <- deb_decimal(c(10000.8252, 0, -10000.8252))
tetra <- deb_tetra(l = c(10000, 0, -10000),

s = c(8, 0, -8),
d = c(5, 0, -5),
f = c(2.8252, 0, -2.8252))

deb_text(lsd)
deb_text(dec)

transactions 33

deb_text(tetra)

Compact format for deb_lsd with suffix to distinguish currency
deb_text(lsd, s.mark = "", d.mark = "",

sep = ".", suffix = " Flemish")

Control the number of digits
deb_text(lsd, digits = 3)
deb_text(dec, digits = 3)
deb_text(tetra, digits = 3)

Change big mark and decimal mark
deb_text(lsd, digits = 4, big.mark = ".", decimal.mark = ",")
deb_text(dec, digits = 4, big.mark = ".", decimal.mark = ",")
deb_text(tetra, digits = 4, big.mark = ".", decimal.mark = ",")

transactions Analysis of double-entry bookkeeping

Description

Family of seven related functions to analyze transactions data frames that have credit, debit, and
tetrapartite (lsd) or tetrapartite (lsdf) columns, mimicking an account book.

• deb_account() credit, debit, and current value of a single account.

• deb_account_summary() credit, debit, and current value of all accounts.

• deb_credit() total credit of each account.

• deb_debit() total debit of each account.

• deb_current() current value of each account (credit - debit).

• deb_open() current value of each account that has a positive or negative value.

• deb_balance() positive and negative value remaining in a transactions data frame.

Usage

deb_account(
df,
account_id,
credit = credit,
debit = debit,
lsd = lsd,
na.rm = FALSE

)

deb_account_summary(
df,
credit = credit,

34 transactions

debit = debit,
lsd = lsd,
na.rm = FALSE

)

deb_credit(df, credit = credit, debit = debit, lsd = lsd, na.rm = FALSE)

deb_debit(df, credit = credit, debit = debit, lsd = lsd, na.rm = FALSE)

deb_current(df, credit = credit, debit = debit, lsd = lsd, na.rm = FALSE)

deb_open(df, credit = credit, debit = debit, lsd = lsd, na.rm = FALSE)

deb_balance(df, credit = credit, debit = debit, lsd = lsd, na.rm = FALSE)

Arguments

df A data frame or tibble with at least credit, debit, and lsd columns.

account_id The id of the account to be used to calculate the credit, debit, and current values.

credit Credit column: Unquoted name of the credit column, representing the accounts
that discharge the transactional values or from which the values derive. Default
is credit.

debit Debit column: Unquoted name of the debit column, representing the accounts
that receive the transactional values. Default is debit.

lsd Value column: Unquoted name of a column of class deb_lsd, deb_decimal, or
deb_tetra. Default is lsd.

na.rm Logical. Should missing values (including NaN) be removed?

Value

Transaction functions return a data frame or tibble with columns for the accounts in df and credit,
debit, and/or current values in the same type and bases as lsd:

• deb_account(): a data frame with three rows showing the credit, debit, and current value of
the given account.

• deb_account_summary() a data frame with one row for each account in df and credit, debit,
and current value columns.

• deb_credit(): a data frame with one row for each account with the total credit of the ac-
counts.

• deb_debit(): a data frame with one row for each account with the total debit of the accounts.

• deb_current(): a data frame with one row for each account with the current value of the
accounts.

• deb_open(): a data frame with one row for each account whose current value is not 0. If all
accounts are equal to zero, a data frame with zero rows will be returned.

• deb_balance(): a data frame with two rows showing the credit and debit remaining in df.

transactions 35

Transactions data frames:

Transactions data frames have the structure of an account book. They should have a similar ar-
rangement to dafforne_transactions. Each row is a transaction in the book. credit and debit
columns contain the account ids associated with discharging account (credit) and the receiving ac-
count (debit). The lsd column represents the tripartite or tetrapartite value of each transaction. Like
dafforne_transactions, transactions data frames can have additional columns with attributes for
each transaction such as id or date among others.

Examples

Examples use dafforne_transactions data,
which have default column names.
See dafforne_accounts for account names.

Credit, debit, and current value of cash account
deb_account(dafforne_transactions, account_id = 1,

credit = credit, debit = debit,
lsd = lsd)

Credit, debit, and current value of profit and loss account
deb_account(dafforne_transactions, account_id = 23)

Summary of all accounts in Dafforne's ledger
deb_account_summary(dafforne_transactions)

Credit of accounts in Dafforne's ledger
deb_credit(dafforne_transactions)

Debit of accounts in Dafforne's ledger
deb_debit(dafforne_transactions)

Current value of accounts in Dafforne's ledger
current <- deb_current(dafforne_transactions)
current

Current value of open account in Dafforne's ledger
open <- deb_open(dafforne_transactions)
open

Compare the amount of rows in returned values of
deb_current() vs deb_open()
nrow(current)
nrow(open)

Credit and debit remaining on Dafforne's ledger
deb_balance(dafforne_transactions)

36 vec_math.deb_tetra

vec_math.deb_lsd Error message for unimplemented mathematics functions

Description

Error message for unimplemented mathematics functions

Usage

S3 method for class 'deb_lsd'
vec_math(.fn, .x, ...)

Arguments

.fn A mathematical function from the base package.

.x A vector.

... Additional arguments passed to .fn.

Value

A deb_lsd vector.

vec_math.deb_tetra Error message for unimplemented mathematics functions

Description

Error message for unimplemented mathematics functions

Usage

S3 method for class 'deb_tetra'
vec_math(.fn, .x, ...)

Arguments

.fn A mathematical function from the base package.

.x A vector.

... Additional arguments passed to .fn.

Value

A deb_tetra vector.

Index

∗ datasets
dafforne_accounts, 12
dafforne_transactions, 13

arithmetic, 2

cast-decimal, 4
cast-lsd, 6
cast-tetra, 8
comparison, 10
convert-bases, 11

dafforne_accounts, 12
dafforne_transactions, 13
deb_account (transactions), 33
deb_account_summary (transactions), 33
deb_as_decimal (cast-decimal), 4
deb_as_decimal(), 7, 9
deb_as_list (list-lsd), 21
deb_as_lsd (cast-lsd), 6
deb_as_lsd(), 5, 9, 22
deb_as_tetra (cast-tetra), 8
deb_as_tetra(), 5, 7, 22
deb_balance (transactions), 33
deb_convert_bases (convert-bases), 11
deb_convert_unit, 14
deb_credit (transactions), 33
deb_current (transactions), 33
deb_debit (transactions), 33
deb_decimal, 15
deb_decimal(), 19, 20
deb_gather_lsd (lsd-column), 22
deb_gather_lsd(), 29
deb_gather_tetra (tetra-column), 28
deb_gather_tetra(), 24
deb_is_decimal, 16
deb_is_lsd, 17
deb_is_tetra, 17
deb_lsd, 18
deb_lsd(), 7, 16, 20

deb_normalize (normalization), 26
deb_open (transactions), 33
deb_spread_lsd (lsd-column), 22
deb_spread_lsd(), 29
deb_spread_tetra (tetra-column), 28
deb_spread_tetra(), 24
deb_tetra, 19
deb_tetra(), 9, 16, 19
deb_text (text), 30
dplyr::rename(), 23, 29

formatC(), 32

list-lsd, 21
lsd-column, 22

Math, 25
mathematics, 25

normalization, 26

Summary, 25

tetra-column, 28
text, 30
transactions, 33

vec_arith.deb_decimal (arithmetic), 2
vec_arith.deb_lsd (arithmetic), 2
vec_arith.deb_tetra (arithmetic), 2
vec_arith.numeric.deb_decimal

(arithmetic), 2
vec_arith.numeric.deb_lsd (arithmetic),

2
vec_arith.numeric.deb_tetra

(arithmetic), 2
vec_math.deb_lsd, 36
vec_math.deb_tetra, 36
vec_proxy_compare.deb_lsd (comparison),

10

37

38 INDEX

vec_proxy_compare.deb_tetra
(comparison), 10

vec_proxy_equal.deb_lsd (comparison), 10
vec_proxy_equal.deb_tetra (comparison),

10

	arithmetic
	cast-decimal
	cast-lsd
	cast-tetra
	comparison
	convert-bases
	dafforne_accounts
	dafforne_transactions
	deb_convert_unit
	deb_decimal
	deb_is_decimal
	deb_is_lsd
	deb_is_tetra
	deb_lsd
	deb_tetra
	list-lsd
	lsd-column
	mathematics
	normalization
	tetra-column
	text
	transactions
	vec_math.deb_lsd
	vec_math.deb_tetra
	Index

